Application of machine learning to ultrasound images to differentiate follicular neoplasms of the thyroid gland
Ilah Shin, Young Jae Kim, Kyunghwa Han, Eunjung Lee, Hye Jung Kim, Jung Hee Shin, Hee Jung Moon, Ji Hyun Youk, Kwang Gi Kim, Jin Young Kwak
Ultrasonography. 2020;39(3):257-265.   Published online 2020 Feb 29     DOI: https://doi.org/10.14366/usg.19069
Citations to this article as recorded by Crossref logo
Models of ultrasonic radiomics and clinical characters for lymph node metastasis assessment in thyroid cancer: a retrospective study
Hui Zhu, Bing Yu, Yanyan Li, Yuhua Zhang, Juebin Jin, Yao Ai, Xiance Jin, Yan Yang
PeerJ.2023; 11: e14546.     CrossRef
Comparison of S-Detect and thyroid imaging reporting and data system classifications in the diagnosis of cytologically indeterminate thyroid nodules
Ling Zhou, Lin-lin Zheng, Chuan-ju Zhang, Hong-fen Wei, Li-long Xu, Mu-rui Zhang, Qiang Li, Gao-fei He, Edem Prince Ghamor-Amegavi, Shi-yan Li
Frontiers in Endocrinology.2023;[Epub]     CrossRef
Diagnostic performance of artificial intelligence-based computer-aided diagnosis system in longitudinal and transverse ultrasonic views for differentiating thyroid nodules
Lin-lin Zheng, Su-ya Ma, Ling Zhou, Cong Yu, Hai-shan Xu, Li-long Xu, Shi-yan Li
Frontiers in Endocrinology.2023;[Epub]     CrossRef
The progress of radiomics in thyroid nodules
XiaoFan Gao, Xuan Ran, Wei Ding
Frontiers in Oncology.2023;[Epub]     CrossRef
Artificial intelligence in thyroid ultrasound
Chun-Li Cao, Qiao-Li Li, Jin Tong, Li-Nan Shi, Wen-Xiao Li, Ya Xu, Jing Cheng, Ting-Ting Du, Jun Li, Xin-Wu Cui
Frontiers in Oncology.2023;[Epub]     CrossRef
A hybrid optimization algorithm‐based feature selection for thyroid disease classifier with rough type‐2 fuzzy support vector machine
Vidhushavarshini Sureshkumar, Sathiyabhama Balasubramaniam, Vinayakumar Ravi, Ajay Arunachalam
Expert Systems.2022;[Epub]     CrossRef
Radiomic Detection of Malignancy within Thyroid Nodules Using Ultrasonography—A Systematic Review and Meta-Analysis
Eoin F. Cleere, Matthew G. Davey, Shane O’Neill, Mel Corbett, John P O’Donnell, Sean Hacking, Ivan J. Keogh, Aoife J. Lowery, Michael J. Kerin
Diagnostics.2022; 12(4): 794.     CrossRef
Deep convolutional neural networks in thyroid disease detection: A multi-classification comparison by ultrasonography and computed tomography
Xinyu Zhang, Vincent CS. Lee, Jia Rong, James C. Lee, Feng Liu
Computer Methods and Programs in Biomedicine.2022; 220: 106823.     CrossRef
Differentiate Thyroid Follicular Adenoma from Carcinoma with Combined Ultrasound Radiomics Features and Clinical Ultrasound Features
Bing Yu, Yanyan Li, Xiangle Yu, Yao Ai, Juebin Jin, Ji Zhang, YuHua Zhang, Hui Zhu, Congying Xie, Meixiao Shen, Yan Yang, Xiance Jin
Journal of Digital Imaging.2022; 35(5): 1362.     CrossRef
Clinicoradiological Characteristics in the Differential Diagnosis of Follicular-Patterned Lesions of the Thyroid: A Multicenter Cohort Study
Jeong Hoon Lee, Eun Ju Ha, Da Hyun Lee, Miran Han, Jung Hyun Park, Ji-hoon Kim
Korean Journal of Radiology.2022; 23(7): 763.     CrossRef
A comparison of artificial intelligence versus radiologists in the diagnosis of thyroid nodules using ultrasonography: a systematic review and meta-analysis
Pimrada Potipimpanon, Natamon Charakorn, Prakobkiat Hirunwiwatkul
European Archives of Oto-Rhino-Laryngology.2022; 279(11): 5363.     CrossRef
A multi-channel deep convolutional neural network for multi-classifying thyroid diseases
Xinyu Zhang, Vincent C.S. Lee, Jia Rong, James C. Lee, Jiangning Song, Feng Liu
Computers in Biology and Medicine.2022; 148: 105961.     CrossRef
The Value of Sonography in Distinguishing Follicular Thyroid Carcinoma from Adenoma
Wen Li, Qing Song, Yu Lan, Jie Li, Ying Zhang, Lin Yan, Yingying Li, Yan Zhang, Yukun Luo
Cancer Management and Research.2021; Volume 13: 3991.     CrossRef