Most Cited Articles  >  Browse Articles  >  Most Cited Articles



  • Most-cited articles are from the articles published during the last two years (2021 ~ ).
  • Review Article
    Radiofrequency ablation of benign thyroid nodules: recommendations from the Asian Conference on Tumor Ablation Task Force
    Eun Ju Ha, Jung Hwan Baek, Ying Che, Yi-Hong Chou, Nobuhiro Fukunari, Ji-hoon Kim, Wei-Che Lin, Le Thi My, Dong Gyu Na, Lawrence Han Hwee Quek, Ming-Hsun Wu, Koichiro Yamakado, Jianhua Zhou
    Ultrasonography. 2021;40(1):75-82.   Published online September 8, 2020   DOI: https://doi.org/10.14366/usg.20112
                      
    Original Articles
    Clinical practice guidelines for radiofrequency ablation of benign thyroid nodules: a systematic review
    Minkyoung Lee, Jung Hwan Baek, Chong Hyun Suh, Sae Rom Chung, Young Jun Choi, Jeong Hyun Lee, Eun Ju Ha, Dong Gyu Na
    Ultrasonography. 2021;40(2):256-264.   Published online June 8, 2020   DOI: https://doi.org/10.14366/usg.20015
                      
    Quantitative ultrasound radiofrequency data analysis for the assessment of hepatic steatosis using the controlled attenuation parameter as a reference standard
    Sun Kyung Jeon, Ijin Joo, So Yeon Kim, Jong Keon Jang, Juil Park, Hee Sun Park, Eun Sun Lee, Jeong Min Lee
    Ultrasonography. 2021;40(1):136-146.   Published online May 9, 2020   DOI: https://doi.org/10.14366/usg.20042
                             Supplementary      
    A pilot clinical study of low-intensity transcranial focused ultrasound in Alzheimer’s disease
    Hyeonseok Jeong, Jooyeon Jamie Im, Jong-Sik Park, Seung-Hee Na, Wonhye Lee, Seung-Schik Yoo, In-Uk Song, Yong-An Chung
    Ultrasonography. 2021;40(4):512-519.   Published online January 16, 2021   DOI: https://doi.org/10.14366/usg.20138
                      
    Special Review of Artifical Intelligence (Part 1)
    Artificial intelligence in musculoskeletal ultrasound imaging
    YiRang Shin, Jaemoon Yang, Young Han Lee, Sungjun Kim
    Ultrasonography. 2021;40(1):30-44.   Published online September 6, 2020   DOI: https://doi.org/10.14366/usg.20080
                      
    Special Review of Artificial Intelligence (part 2)
    Artificial intelligence in breast ultrasonography
    Jaeil Kim, Hye Jung Kim, Chanho Kim, Won Hwa Kim
    Ultrasonography. 2021;40(2):183-190.   Published online November 12, 2020   DOI: https://doi.org/10.14366/usg.20117
                      
    Original Article
    Sonazoid-enhanced ultrasonography: comparison with CT/MRI Liver Imaging Reporting and Data System in patients with suspected hepatocellular carcinoma
    Jeong Ah Hwang, Woo Kyoung Jeong, Ji Hye Min, Yeun-Yoon Kim, Nam Hun Heo, Hyo Keun Lim
    Ultrasonography. 2021;40(4):486-498.   Published online January 15, 2021   DOI: https://doi.org/10.14366/usg.20120
                             Supplementary      
    Special Reviews of Artifical Intelligence (Part 1)
    Technology trends and applications of deep learning in ultrasonography: image quality enhancement, diagnostic support, and improving workflow efficiency
    Jonghyon Yi, Ho Kyung Kang, Jae-Hyun Kwon, Kang-Sik Kim, Moon Ho Park, Yeong Kyeong Seong, Dong Woo Kim, Byungeun Ahn, Kilsu Ha, Jinyong Lee, Zaegyoo Hah, Won-Chul Bang
    Ultrasonography. 2021;40(1):7-22.   Published online September 14, 2020   DOI: https://doi.org/10.14366/usg.20102
                      
    Applications of machine learning and deep learning to thyroid imaging: where do we stand?
    Eun Ju Ha, Jung Hwan Baek
    Ultrasonography. 2021;40(1):23-29.   Published online July 3, 2020   DOI: https://doi.org/10.14366/usg.20068
                      
    Original Articles
    Diagnostic performance of the modified Korean Thyroid Imaging Reporting and Data System for thyroid malignancy according to nodule size: a comparison with five society guidelines
    Dong Gyu Na, Wooyul Paik, Jaehyung Cha, Hye Yun Gwon, Suh Young Kim, Roh-Eul Yoo
    Ultrasonography. 2021;40(4):474-485.   Published online December 9, 2020   DOI: https://doi.org/10.14366/usg.20148
                             Supplementary      
    Comparison of the diagnostic performance of the modified Korean Thyroid Imaging Reporting and Data System for thyroid malignancy with three international guidelines
    Eun Ju Ha, Jung Hee Shin, Dong Gyu Na, So Lyung Jung, Young Hen Lee, Wooyul Paik, Min Ji Hong, Yeo Koon Kim, Chang Yoon Lee
    Ultrasonography. 2021;40(4):594-601.   Published online April 5, 2021   DOI: https://doi.org/10.14366/usg.21056
                             Supplementary      
    Reproducibility of shear wave elastography among operators, machines, and probes in an elasticity phantom
    Abdulaziz Ibrahim Alrashed, Abdulrahman M. Alfuraih
    Ultrasonography. 2021;40(1):158-166.   Published online May 9, 2020   DOI: https://doi.org/10.14366/usg.20011
                      
    Meta-Analysis
    Accuracy of the ultrasound attenuation coefficient for the evaluation of hepatic steatosis: a systematic review and meta-analysis of prospective studies
    Jong Keon Jang, Sang Hyun Choi, Ji Sung Lee, So Yeon Kim, Seung Soo Lee, Kyung Won Kim
    Ultrasonography. 2022;41(1):83-92.   Published online June 1, 2021   DOI: https://doi.org/10.14366/usg.21076
                             Supplementary      
    Original Article
    A comparison of the diagnostic performance of the O-RADS, RMI4, IOTA LR2, and IOTA SR systems by senior and junior doctors
    Yuyang Guo, Baihua Zhao, Shan Zhou, Lieming Wen, Jieyu Liu, Yaqian Fu, Fang Xu, Minghui Liu
    Ultrasonography. 2022;41(3):511-518.   Published online January 31, 2022   DOI: https://doi.org/10.14366/usg.21237
                      
    Review Article
    Obstetric ultrasound: where are we and where are we going?
    Jacques S Abramowicz
    Ultrasonography. 2021;40(1):57-74.   Published online August 25, 2020   DOI: https://doi.org/10.14366/usg.20088
                             Supplementary      
    Original Article
    Reproducibility and diagnostic performance of the vascular index of superb microvascular imaging in real-time breast ultrasonography for evaluating breast masses
    Eun Ji Lee, Yun-Woo Chang, Eunsun Oh, Jiyoung Hwang, Hyun-joo Kim, Seong Sook Hong
    Ultrasonography. 2021;40(3):398-406.   Published online November 27, 2020   DOI: https://doi.org/10.14366/usg.20153
                      
    Meta-Analysis
    Combination of shear-wave elastography with ultrasonography for detection of breast cancer and reduction of unnecessary biopsies: a systematic review and meta-analysis
    Sun-young Park, Bong Joo Kang
    Ultrasonography. 2021;40(3):318-332.   Published online December 24, 2020   DOI: https://doi.org/10.14366/usg.20058
                      
    Original Article
    What shear wave elastography parameter best differentiates breast cancer and predicts its histologic aggressiveness?
    Hyunjin Kim, Jeongmin Lee, Bong Joo Kang, Sung Hun Kim
    Ultrasonography. 2021;40(2):265-273.   Published online June 15, 2020   DOI: https://doi.org/10.14366/usg.20007
                      
    Review Article
    Current status of image-based surveillance in hepatocellular carcinoma
    Dong Hwan Kim, Joon-Il Choi
    Ultrasonography. 2021;40(1):45-56.   Published online July 25, 2020   DOI: https://doi.org/10.14366/usg.20067
                      
    Original Article
    Key imaging features for differentiating cystic biliary atresia from choledochal cyst: prenatal ultrasonography and postnatal ultrasonography and MRI
    Hyun Joo Shin, Haesung Yoon, Seok Joo Han, Kyong Ihn, Hong Koh, Ja-Young Kwon, Mi-Jung Lee
    Ultrasonography. 2021;40(2):301-311.   Published online July 31, 2020   DOI: https://doi.org/10.14366/usg.20061
                      
    Volume42 No. 4
    endonote style file
    3.1
    SCImago Journal & Country Rank
    Editorial Office
    A-304 Mapo Trapalace, 53 Mapo-daero, Mapo-gu, Seoul 04158, Korea
    TEL : +82-2-763-5627   FAX : +82-2-763-6909   E-mail : office@ultrasound.or.kr
    About |  Browse Articles |  Current Issue |  For Authors and Reviewers
    Copyright © Korean Society of Ultrasound in Medicine.                 Developed in M2PI
    Close layer
    prev next